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This paper describes circuits for computation of various algebraic functions

on polynomials, power series, intey rs, and reals.

Let R[x] be the polynomials and power series over a commutative ring

which supports a fast Fourier transform and let Rix) be the polynomials and

power series over the rationals A.

For polynomials of degree n-i, we give circuits of depth O(log n) for

computing

- the m-th poier of a polynomial and the product of m polynomials in

([xJ, where m-O(n)

- the snhetric functions on iixJ

- the remainder and quotient of division of polynomials in .Rix)

- inteY2otkatlon of a polynomial in lx].

For power series with n given low order terms, we give circuits of depth

O(log n) for computing the first n low order terms of

- the m-th power of a power series in .?[x] and the Iroducit of m pc.,er

series in MI), where m=O(n)

- the ccoposition of power series in i*[x)

- the reciprocaZ of a power series and the division of two power series

in .2[x)

- the reversion of a power series in j[xJ

- various elementary fun ction8 applied to power series in [x) such as

(fixed) powers, roots, exponentation, logarithm, sin, cos, arctangent,

and hyperbolic cosine.

For integers represented by n bit binary numbers, we give boolean circuits

(whose gates compute the boolean operations A, v, and 1) of depth

O(log n(loglog n) 2) for computing:

(Continued on next page)

SECURITY CLASS(O ICATION 0f THIS PAGE(WheA Data Emtedl



Harvar Unvrst

Center for Reeac

in~~~ Copu-n Techolog

Aike Comutaion abortor

33 Sxor tre

Cabide Msscuet e2138S



IOGARITHMIC DEPTH CIRCUITS
FOR ALGEBRAIC FUNCTIONS

John Reif

TR-35-82

November 1982

t \

!7



LOGARITHMIC DEPTH CIRCUITS FOR ALGEBRAIC FUNCTIONS

by

John Reif*

Aiken Comput'ation Laboratory
Division of AFplied Science

Harvard University
Cambridge, Massachusetts

This work was supported in part by the National Science Foundation

Grant NSF-MCS79-21024 and the Office of Naval Research Contract
N00014-80-C-0647



20. (Continued) Logarithmic Depth Circuits for Algebraic Functions

- the m-th power of an integer and the product of m integers, where

M -O(n)

- the re' ainder and quotient of the diviaion of two integers.

For reals on a finite interval [a,b] represented as floating point numbers

within relative accuracy o( 2
- n ), we give boolean circuits of depth O(log n)

(loglog n) 2) for computing within relative accuracy o(2-n):

- the m-th power of a real and the product of m reals where m- O(n)

- the reciprocal of a real and division of reals

- the various elementary functions on reals.

As a consequence of the above, for polynomials and power series in J[x)

we have uniform boolean circuits of depth o(log n(loglog n) 2 for all the

above listed problems for polynomials and power series, and also:

- evaluation of a polynomial or power series in fx] at n points,

within relative accuracy o(2-n ).

All our circuiLs may be uniformly constructed by a deterministic Turing

machine with space O(log n). The best circuit depth previously known for any

2
of the above problem was P(log in)



0. ABSTRACT

This paper describes circuits for computation of various algebraic functions

on polynomials, power series, integers, and reals.

Let 0?[x] be the polynomials and power series over a commutative ring

which supports a fast Fourier transform and let P[xj be the polynomials and

power series over the rationals R-. a

For polynomials of degree n-l, wt- give circuits of depth O(log n) for

computing

- the m-th power of a polynomial and the product of m polynomials in

'Ex}, where m=O(n)

- the s8mmetric.functions on '[x]

- the remainder and quotient of division of polynomials in [x]

- interplaticn ot a poLynomiai in R[xl.

For power series with n given low order terms, we give circuits of depth

O(log n) for computing the first n low order terms of

- the m-th power of a power series in Rix] and the product of m power(K
series in [x] where m='own

- the composition of power series in S'[xl

- the rec2procal of a power series and the division of two power series

in V[xJ

- the reversion of a power series in *[x 1_'

- various elementary functions applied to power series in R[x such as

(fixed) powers, roots, exponentation, logarithm, sin, cos, arctangent,

and hyperbolic cosine.

For integers represented by n bit binary numbers, we give boolean circuits

(whose gates compute the boolean operations A, v, and 1) of depth

O(log n(loglog n) ) for computing:
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- the m-th power of an integer and the product of m integers, where

m=0O(n)

- the remainder and quotient of the division of two integers.

For reals on a finite interval la,b) represented as floating point numbers

within relative accuracy o (2 -n), we give boolean circuits of depth O(log n)

(loglog n)2) for computing within relative accuracy o(2-n):

- the m-th power of a real and the product of m reals where m= O(n)

- the reciprocal of a real and division of reals

- the various elementa2-d functions on reals.

As a consequence of the above, for polynomials and power series in 2[x]

we have uniform boolean circuits of depth O(log n(loglog n) ) for all the

above listed problems for polynomials and power series, and also:

- evaluation of a polynomial or power series in 21x] at n points,

within relative accuracy o(2 -n).

All our circuits may be uniformly constructed by a deterministic Turing

machine with space O(log n). The best circuit depth previously known for any

2
of the above problems was R(log n)

I. INTRODUCTION

Much research is now done on parallel algorithms, although in fact at this

time most current computers contain only a single processor. However, most

computers do use parallel circuits to implement the most basic and often re~cated

operations, such as the arithmetic operations: addition, subtraction, multiplica-

tion and division. These operations are generally applied to integers with an

n bit binary representation, and to floating point reals with relative accuracy 2- .

Other frequently used repeated operations, which certainly would merit special

purpose circuits, are the elementary functions such as sin, cosine, arctangent,

exponentation, logarithm, square roots, and fixed powers.

- ..... .... ... ... .... ... .. . . _ ..... 'I



-3-

The depth of a circuit is the time for its parallel execution. What is the Tminimum

depth of boolean circuits for these arithmetic operations and elementary functions?

For integer addition, [Ofman, 62], [Krapchenko, 67] and [Ladner and Fischer,

80] give boolean circuits of depth O(log n) and size O(n). Subtraction circuits

with the same asymptotic depth and size can easily be gotten from these addition

circuits.

For integer multiplication, [Ofman, 62] and [Wallace, 64] give boolean circuits

of depth O(log n), and [Schonhage and Strassen, 71] also achieve depth O(log n)

with simultaneous size O(n(log n)loglog n).

2
For division, best known boolean circuit depth was n(log n)2 . [Anderson,

et al., 67] first gave such a circuit (which incidentally was implemented by them

on the IBM/360 Model 91 Floating-Point Execution Unit). [Knuth, 69] and [Aho,

Hoocroft and Ullman, 74] describe a division circuit attributed to Steve Cook of

depth (log n)2 and size 0(n log n loglog n).

The best known boolean circuit depth for the elementary functions was
2

P(log n) [Brent, 76], [Kung, 76].
2

Many of the above mentioned boolean circuits of depth 2(log n) use a second

order Newton iteration with 0(log n) steps, each requiring an n-bit integer

multiplication with S(log n) depth. Alternatively, a reduction is made to the

problem of computing the m-th power of a n-bit integer modulo 2 n+l for m= O(n).

This is naively computed by P(log n) steps of repeated squaring, where each

square computation requires 0(log n) depth.

This paper gives a uniform boolean circuits of depth O(log n(loglog n)
2

for the problem of computing the product of m n-bit integers modulo (2n+l).

From this result, we get uniform boolean circuits of depth O(log n(loglog n)2

for the problems of division and computing elementary functions, among others.

[Borodin, 77] proved that if a function f is computed in uniform boolean

circuit depth d(n) >log n, then f can be computed by a deterministic Turing

NV
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Machine with space d(n). Thus division and the elementary functions can be

computed in deterministic space O(log n(loglog n) 2). Note that as an amusing

consequence, we have that for any n 9O the first n digits of IT, Euler's

constant e, and the golden ratio (P can all be computed by uniform boolean

circuits of depth O(log n(loglog n)2 ), and hence can be computed in det rministic

space O(log n(loglog n) 2).

An essential technique in the construction of our product circuit is the use

of negatively wrapped convolutions, which can be computed in boolean depth

O(log n) by the fast Fourier transform of [Cooley and Tukey, 65]. This tech-

nique was first introduced by [Schonhage and Strassen, 71] for the multiplication

of two integers. Our innovation was to generalize the technique to products of

more than two integers.

Oui Lt~miques are bast first in t context of nolyrri.l-z ana

power series in say R[x]. In fact, this context is interesting in itself. We

might envision a special purpose computer designed for algebraic computation. Its

data are (coefficients of) polynomials and power series. The arithmetic operations

including division of polynomials and power series are elementary operations of

our "algebraic computer." Also, frequently applied operations are the composition

of power series, reversion of a power series, computation of elementary functions

applied to power series, and interpolation of polynomials.

Section 2 gives circuits of depth O(log n) that for all these polynomial

and power series operations, where each gate of the circuits computes an addition,

multiplication, or a division of two rationals. In the case the polynomials and

power series have rational coefficients, then we have boolean circuits of

O(log n(loglog n) 2) depth for all these polynomial and power-series operations.

Furthermore, we can also evaluate the resulting polynomials and power series

within accuracy o(2- n) by boolean circuits with depth O(log n(loglog n) 2).
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2. CIRCUITS FOR POLYNOMIAL AND POWER SERIES COMPUTATIONS

2.0 Circuit Definitions

A circuit N over a commutative ring ?= ( 9,+,-,0,1) is an acyclic

labeled digraph, with

(i) a list of N distinguished input nodes that have no entering edges

(ii) constant nodes with indegree 0 and labeled with constants in 9

(iii) internaZ nodes with indegree two and labeled with the symbols in

{ I+., . .. }

(iv) a list of £ distinguished output nodes.

Given an assignment of the input nodes from domain !, the value of the

circuit at the output nodes is gotten by evaluation of the gates in topological

order. The circuit aN  thus defines a mapping from !N to l£. A circuit

'N over the rationals 2 is similarly defined, except tne nodes can aisu

compute division.

Let f be a function of (the coefficients of) m polynomials pl(X) . W

in Wfx] of degree n-l. A circuit % for f has N = m n inputs, namely

the list of N coefficients in 2 of the given polynomials. The output nodes

of N give the list of coefficients of f(p (x),...,p m(x)). If on the other

hand f is a function of m power series p 1 (x) ..... pm(x) in J'[xj each with

n given low order coefficients, then the circuit aN for f also has N= nm

inputs, and the output nodes of N only give some prescribed finite number of

the coefficients of (the possibly infinite) power series f Pl(X) ,...,pro(W.

The depth of circuit aN "s the length of its longest path. A function f
N

over polynomials or power series in R has simultaneous dqpth O(d(N)) and

size O(S(N)) if 3 an infinite family of circuits a 1 .... , N,... and constants

c1 , c2 )1 such that VN;l, EN has depth not more than c1 d(N) and size not

more than c2S(N) and given N input coefficients of the input polynomial or
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power series, OxN computes f within the prescribed number of coefficients.

All the circuits considered in this paper are uniform in the sense of

[Borodin, 77]; they may be constructed in space O(log N) by a deterministic

Turing Machine.

2.1 The Discrete Fourier Transform

Fix a commutative ring R= (q,+,.,0,1). We assume w is the principle

N-th root of unity in J?. Given a vector a ER, the Discrete Fourier Trans-

form is

DFT N (a) = Aa

where A.. = ij for 0<i, j <N. We assume N has a rultiplicative1 -i

inverse and let A. =- The inverse Discrete Fourier Transform is
Ii N-I1-1ij

DFT N(a) =A a and obviously satisfies DFT N(DFTN (a)) =a. [Cooley and Tukey,

65) gave the Fast Fourier Transform for which

THEOREM 2.1. DFT and DFT 1 over R have simuzateoue dePth oflog N)N N

and size O(N logN).

(Note given a vector aE! , where n <N, DFT N (a) will be defined to be
+ +

DFT N(a + ) where a is che vector of length N derived by concatenating a

with N-n zeros.)

2.2 Products of Polynomials

Suppose we are given m vectors a. e n  for i = 1,... ,m. Each vector1

a= (a. 0 ,.. ,a 1 )T gives the coefficients of a n-i degree polynomial

n-l
A. (x) 7 a. . x in J'fxJ. Let N = nm. We wish to compute the product

j=0 N- k 
m

polynomial B(x) = I bk x , where B(x) = 11 A. (x). (Note that we havek= i=li
k=ON-.

b k=0 for N-m+14k4N-.)
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In the special case m= 2 and N =2n, the convolution vector

b- (b0,...,b N
)T = a-)a 2  gives the coefficients of B(x). By the Convolution

Theorem:

a ®a 2 = DFT N(DFTN (aI )-DFTN (a2 )) where denotes paizvise product.

Hence the well-known result that

THEOREM 2.2. The product of two poZyncmials in R[x] of degree n-I

has simultaneous depth O(log n) and size O(n logn).

In the case of general m.>2, we wish to compute the coefficient vector

Tb = (bO,.. ,bNl)T a• = b'.. b aI 0 ... Oam
1 m

By repeated application of the Convolution Theorem, we get

LEMMA 2.1. b =DFTNI (DFT (a) ... DFT (aN))N Ni N N-1

Thus we first compute in parallel for i=,...,m fi = DFT N(ai ), where

f,=(fi,0 ,... fi,N-)T Next we compute in parallel for j= 1,..., m the
m

elementary products F. = Ti f... Finally, we compute DFT((F ... ,FN  -
I i=l 0 ' -

Since the computation of DFTN' DFTN and the required products F., each)

have depth O(log N), we have:

THEOREM 2.3. The product of m poZynoma7s in .R[x] of degree n-i

has depth O(log(nm)).

(Note that the naive method of repeated squaring by Theorem 2.2 has

depth Q(log(m)log(n)).

2.3 Modular Products of Polynomials

n
Let B(x) = n Ai (x) be the product polynomial considered in the previous

i=l n-i
section. Here we consider the computation of the moduZar product D(x) = L d x

i=0 1
where D(x) -B(x) mod (xn+l).

i ,s
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m-i
LEMMA 2.2. The coefficients of D(X) are d = (-l) rbnr+i for

1 r=O
i =0,... ,n-l.

For proof, see the Appendix.

We assume w is the principle nth root of unity in JF, and n has a

2
multiplicative inverse. We also assume there exists an ip EQ such that W.

Then n =-l. Let Si = (a i,0'4ai,l .... 4n-lai,n-l)T. The negativeZy wrapped

convolution of al,...,am is

0 1 n - idI = (d do , .4... "P dn- l )

In the Appendix we prove:

LEMMA 2.3. d = DFT n(DFTn (a 1) DFT n(a)).

The above Lemmas 2.2, 2.3 and Theorem 2.1 imply:

V i E O R E I ; . 2 . 4 . 47 7 ,-4 c , m c . ... ,- Z ar' p. .r o d u c t V A" t 1 .. .. a t v 1 1 -, q t n 4 -. . ... .. - - -. , . - ' , 7
.L1V ".l * * ~L' ~ "'" m......-- -.......

A (x) , (.x,A CX) in W[xJ degree n-i has sir.!Ztaneou, depth O(log (nm)) and

size O(nm log(nm)) . The modular po---er A(x)m mod(xn+l) cf a singZe poZy.nc".ia

A(x) of degree n-i has sirraZtaneous depth O(log(nm)) and s;ize O(n log (nm)).

2.4 Elementary Functions on Power Series

An immediate consequence of Theorem 2.3 is

COROLLARY 2.1. The composition of two power series in R[x] has depth

O(log n).

The elementary functions exp(x), log(x), sin(x), cos(x), arctan(x), and

square root(x), etc. all have known Taylor series expansions convergent over

given intervals. Thus by Corollary 2.1 we have:

COROLLARY 2.2. The elementar functions on [x] have depth O(log n).

For some given X1 ,.°.,X N it is frequently useful in algebraic comFu-
N N

tations to determine the polynomial T1 (x-x.) = I (-1)J pjx whose coefficients
iu3 1 j =0

.nI.
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pj I --<ij xi * x. are the elementary symmetric functions. It was

pointed out to us by Les Valiant that Theorem 2.3 immediately implies

COROLLARY 2.3. The elementary symmetric functions in W[x] have depth

O(log N).

2.5 Power Series and Polynomial Division

n-i
Let A(z) I a.z be a power series in 2[xj. The reciprocal of A(z)

is the power series I(z) I r.z i  such that A(z)-I(z) =1. I(z) has the
i=O

infinite series expansion

I(z) = T (l-A(z))

i=O

n-l
We wish to compute the first n coefficients of I(z). Since I(z) = I (l-A(z)) +

i=O
o(z n ) , we have by Theorem 2.3:

COROLLARY 2.4. The first n terms of the reciprocal of a power series and

the division of two poer series in 21x] can be computed in depth O(log n).

An alternative method using the lemma below results in a circuit of depth

O(log n) with smaller circuit size.

log(n+l)-l 2i

LEMMA 2.4. If I(z) = f (l-(I-A(z)) ) then 11(z) -I(z)I = o(zn)
i=O

for zE(0, I ) and A(z) >l-z.
2

For proof, see the Appendix.

In the Appendix we show that Corollary 2.4 implies:

COROLLARY 2.5. Given polynomiaZs a(x), b(x) in (x] of degree at most

n, we can compute in depth O(log n) the unique polynomials q(x), r(x) such

that a(x) =q(x)b(x) +r(x) and degree< (r(x)) degree(b(x)).

2.6 Polynomial Interpolation

COROLLARY 2.6. Interpolation of a polynor'al in V[x] has depth O(log n).
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2.7 Reversion of a Power Series

In the Appendix we show that Theorem 2.3 and Corollary 2.4 imply:

*'OROLLARY 2.7. The reversion of a power series in 2[x] has depth O(log n).

3. INTEGER COMPUTATIONS

3.0 Boolean Circuits

We consider computations over integers given as n bit binary nunbers, and

reals over [0,11 given within accuracy 2-n . Our computational model in this

section is the booZlen circuit, defined as usual. The i-th input node of an

takes the i-th bit of the encoding of the input integer or real. Each gate of

L computes a boolean operation V, A, or -1. Each output node provides a bit

of the encoding of the computed integer or real. (In the case of reals with

floating point representation, we only provide the input and output bits up to

some finite prescribed accuracy.)

3.1 The DFT over an Integer Ring

n/2
We assume n and w are positive powers of two. Let p = w, + 1

and let a be the ring of integers modulo p.
p

PROPOSITION 3.1. In 9 , w is t:e principle nth root of unity and n
p

has a uZltipZicative inverse modulo p.

Proposition 3.1 implies DFT and DFT- I are well defined.
n n

The fast Fourier transform computation of (Cooley and Tukey, 65] yields a

arithmetic circuit a of depth O(log n) and size O(n logn) computing DFTnnn

whose elements require:

(i) addition of two 'log(p)-bit integers.

(ii) multiplication of a 'log(p)'-bit integer by a power of w.



We wish to expand Cn into a boolean circuit. Since w is a power ofn

two, the multiplications can be implemented by the appropriate bit shifts

(i.e., the gate connections are shifted by the appropriate amount). The

additions can be implemented by Carry-Save :.dd circuitry of [Ofman, 62] and

[Wallice, 641 (also see [Savage, 761) yielding a boolean circuit of depth

O(log(np)) and size O(np log(np)). Thus we have

THEOREM 3.1. DFT and DFT- over integer ring W have 8imuZtaneousn n P

booean depth O(log(np)) and sIze O(np log(np)).

3.2 Products of Integers

[Schonhage, Strassen, 71] have shown:

THEOREM 3.2. The product of two N-bit integers has simultaneous boo ean

depth O(log N) and size O(N logN loglog N).

We now show:

THEOREM 3.3. Given a list of N-bit integers a1 ... ,a , the product
mN 1 2

(I ai)mod(2 +1) has booZean depth O(log(Nm)(loglog N)2)
i-1

(Note that the naive method of repeated squaring by Theorem 3.2 results

in a boolean circuit of depth .(log(n log N).)

Proof. In the case m >tN81og N) we do the computation by partitioning

a ,a into 'm/N112' groups, each of size at most N/2 We compute the

product of all the elements of each group in parallel by O(loglog n) iter-

ations of a method described in the proof of Lemma 3.1 below. The result is

a list of 'MN 1/2, integers of N-bits each.

Our resulting boolean circuit for product will have depth D(m,N). It

will satisfy the recurrence

D(m,N) - D(M/N/ 2 ' ,N) + D('N1 /2 ,N) for mON/(8logN).
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In the case m -1, we obviously have

D(m,N) = 1

We will prove below:

LEMA 3.1. We can construct our booZeaj, circuit for product to satisfty:

D(m,N) = D(m,Br(Nmlogm)l/ 21) + O(log N)

for I<m<N/(8logN).

Note that O(ioglog N) applications of the recurrence of Lemma 3.1

implies

D(UN 1/21,N) = DUN1 /2' ,16'N 1/2log N I) + O(log N loglog N)

Solving these above recurrences we get

D(mN) = O(log(Nm)(loglog N)
2

f- x11 i.;01. Thus we have proved Theorem 3.3.

Proof of Lemma 3.1. We can assume we are given N-bit integers

aI . . . , a m, where m<t:/(8 log N). We wish to compute d-E b mod(2N +1)m

where b = n a..
112

Fix n be the largest power of two not more than 8(Nm log m)1/2, and

let L = fN/nI. Each number a. is subdivided into n "chunks" a i0 .... iain
n-i

where Oai, <2 . Then define the polynomial A. (x) = a. x such that

a. = A (2 ). The corresponding product polynomial is j=O

nm- i m
B(x) X b.x i , where B(x)= rA. (x)F;

£) n-i
it must satisfy b B(2 . The modular product polynomial is D(x) = 7 d.x

i i=0
where D(x) -B(x)mod(xn+l); it satisfies d=D(2 ), which is what we have

to compute.

In the Appendix we prove:

PROPOSITION 3.2. For each j-O,...,n-l, Idi1 < 22m(t+l+log n)!og m

L J
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Let w =4 and p= +1. Then by Proposition 3.1, the integer ring

aD has w as the principle n-th root of unity and n has a multiplicative
p n-i T

inverse modp. Also, we define I,= 2. Let a. = (ai' ,ail " n-1' a i,n- )

for i=0,...,n-l. By Lemma 2.2, the coefficients of D(x) are
m-i

d. L (-l)r b nr+i for i =0,... ,n-1. By Proposition 3.1, and by our choice
0 r=0 ... . T

of n we have IdiI <p/2 for all i=l,..,n-l. Then d= d0d ,  ,n-ld)n_ I

is the negatively wrapped convolution of the coefficients of polynomials

A (x),...,Am (x). To compute a, in parallel for i =1.... ,m we compute in

the ring W , DFT(ai ) = (gi,0" ) then in parallel for k= o...,n-1

m
we compute ek = T gi,k mod p, and finally by Lemma 2.3, d=DFTn (e 0 , ... enl).

i=O
Since V is a power of two, we can easily extract do ... ,n_ 1 from a in

depth 019og n). by Theorem 3. 1, the DFT k. .,-l c omputations ha:
n n

depth O(log n).

n/2 2n  1/2
Note that since p =w +1= +1 and n<8(Nmlogm) the recurrence

claimed in Lemma 3.2 is satisfied. 0

3.3 Multiprecision Evaluation of Polynomials and Power Series

Let p(x) be a polynomial or power series in 2[x] with n-1 given

rational coefficients of magnitude <2 n. We wish to evaluate p(x) at a

floating point real x0 within relative accuracy o(2-n ). By Theorem 3.3 we

have

COROLLARY 3.1. The evaZuation of p(x) at a given x0  to reZative

auc-ua o( 2
- n ) has boolean dep th O(log n(loglog n)

2)

Since the elementary functions exp(x), log(x), sin(x), cos(x), arctan(x),

square root(x), etc. power series expansions over given intervals, we have
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COROLLARY 3.2. The evaluation of an elementary function to relative

accuracy o(2 - n ) has boolean depth O(log n(loglog n) 2).

COROLLARY 3.3. The elementary syetric functions (see Section 2.4)

over gtx] have boolean depth O(log n(loglog n)2

3.4 Reciprocals and Division of Integers

n-i n
Let a be an integer within bounds 2 (a <2 . Then a has binary

n-i -(n-i)
representation I a. 2 where a =1. The reciprocal of a is 2 r,

i=O 1 n-r
where r = I r 2 i . We wish to compute the first n bits r 0 ... nrl

i=O 1
For this, we can use the product form of [Anderson, et al., 67] and [Savage, 761.

l o g ( n + l ) - l 2 
i -n ) .

LEMMA 3.3. If r = (1-(-2-a) ) then Ir-il = o(2-).
i=O

By Theorem 3.3 and the above lemma, we get

C'OArM.TARV .4. The reciprocal can be computed within relative accuracd

o(2 - n ) by a boolean circuit of depth O(log n(loglog n) 2).

COROLLARY 3.5. Given integers a, b with binary representation cc,: tini.g

n bits, we can compute in boolean depth O(log n(loglog n) 2) the civision

quotient q and remainder r integers such that a =qb +r and 0 r <b.

Further Results

Our results for 2[x] can be extended to Euclidean domains. In a forth-

coming draft of this paper, we improve the size bounds of our circuitry.

Also, we can reduce our boolean depth bound for products in Theorem 3.3 to

O(log N loglog N) by improving Lcmma 3.1 to get the recurrence D(m, N) =

D(m, m'log N') + O(log N) for m < N/(8log N).
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APPENDIX

Proof of Lemma 2.2.

N-i m-1 N-1 nr+i
B • , F nr+i(x) = b x 3 = _ bnr~X

j=O r=O i=O

- (- 1 ) rb.X mod(xn+l)

r=0 n+n

rnr n

since (-l) _x mod(x +1). a

Proof of Lemma 2.3. For i= 1,....m let DFT(a) =(gi,0 .. i,n-1 }T

where n-i jk
gi,k - E "ai ,j4'J'Lk

j=0

for k=O,... ,n-i. Let

E. k(Z )

(=l O~j 1i,... ,m<n U1 iJ

Now let DPT (d) = (e ;...,e;_ n)T. Then for k= 0,... n-i we let

n-n

£=0

n-1 m- i kk r

7 0 r=0 I W -1) bnr+2 by Lemma 2.2

n-l m-1 ££- n - (_1 )r Ti a.

nr+=. ,

"MAL,
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But if we substitute k = (Zi j ) -nr into the above expansion, we get

I. k Wi)

since nr (_l)r and UP = 1. Hence e=e k . 3

Proof of Lemma 2.4. Let B(z) =l-A(z). Then A(z)T(z) -(l-B(z))T(z) =

1-B(z)n + l = - (l-A(z))n+l. So

(1Az n+l

I(z) -I(z)I = (l-A(z))

2 (1 - A(Z) )n+l since A(z) >12

2zn + l  since z ;?1 -A(z)
n1

o(zn) since z E (0, .1) 0

Proof of Corollary 2.5. (Also, see [Knuth, 81]). Let n =degree(a(x))

and n 2=degree(b(x)). The computation is trivial unless n In 21. Then

n -n2+1

A(z) = Q (z)B (z) +z R(z)

where

A(z) = zna(-), B(z) = z n 2b(1) , Q(z) = z q(1- )
zz z

and R(z) = " zl "

Thus to compute the coefficients of q(x), r(x) we compute the first
n-n2+1

n2 -n1 + 1 coefficients of A(z)/B(z) = Q(z) +O(z ), then compute the
n-n2+l

power series A(z) -B(z)Q(z) = zn1  R(z), and finally output the

coefficients of Q(z), R(z). 0

Proof of Corollary 2.6. Suppose we are given p(x),... ,p (x) polynomials

in [x) each of degree n-1, and polynomials q1 (x) .... ,q(x) where

.. iMAL ''* n - ~n i i
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m
degree(qi(x)) <degree(pi(x)) for i=1,...,n. Let P(x) = 1 p.(x). The

=1

Chinese Remainder Theorem states that there is a unique polynomial Q(x) of

degree less than that of P(x) such that Q(x) -qi (x)mod pi x for

i1,...,m.

The Lagrangian interpolation formula gives

m
Q(x) E qi (x)ri x)six) mod P(x)

i=0

where s. (x) =P(x)/pi X) and r. (x) is the multiplicative inverse of1 1 1

s. (x)mod p. x).11

Theorem 2.2 and Corollary 2.5 imply that preconditioned Chinese remaindering,

with the r (x),...,r mx) also given, has depth O(log n).

However, in the spezial case pi (x =x-ai  for i=l,...,m, where the ai

are distinct then each ri x) = 1/si (x) can be computed in parallel by

Theorem 3.3 and Corollary 2.5 in depth O(log n). In this case the qi (x) =b.1

are constants, since they must have degree less than the pi (x).

Further note that in this case Q(x) is the unique polynomial such that

Q(a.) =b. for i=l,...,m. Thus we have proved Corollary 2.6.

Go i
Proof of Corollary 2.7. Let A(x) = I a.x be a power series in Qix]

i=0
where a0 = 0 and a, = 1. The reversion of A(x) is the power series

G k
R(z) = I rkz where z =A(x). Note that ro =0 and r I =1. For the

k=O
kth coefficient, we first compute

'0

1 0

and then apply Lagrange's reversion formula [Lagrange, 1768] rk =b k /k

for k)02. Thus Theorem 3.3 implies Corollary 2.7. 0

4-
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Proof of Proposition 3.2. Let f (i) be the maximum magnitude of any

coefficient of a polynomial resulting from a product of 2 of the A.j (x)

polynomials taken mdxn+1). Ceryf)=2Xand f(i)= 2n f(i-l)2

for i >0. Solving this recurrence we get

f(rlog in') <22m(Z+l+log n)log m
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